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1. Answer any five questions : 2×5=10

(a) Distinguish between double integral and repeated integral.

(b) Show that 
2n n

r n r r
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, where r xi yj zk  


.

(c) Show that 


 is a vector perpendicular to the surface  , ,x y z c  , where c is a

constant.

(d) Write down the formula for the evaluation of length of a curve. Justify it.

(e) Show that  

2
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x y

x y
x y


  does not exist.
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(f) Find the equation of the tangent plane to the surface   2 2, sinf x y x y xy    at

the point (0, 2, 4).

(g) Find the surface area of a sphere by using surface of revolution.

(h) If A


 and B


 are irrotational, show that A B
 

 is irrotational.

2. Answer any four questions : 5×4=20

(a) State and prove the Schwartz’s theorem for the equality of xyf  and yxf  at some

point (a, b) of the domain of definition of f (x, y).

(b) Express 
cos 22

0 0

x
dx x dy



   as a double integral and evaluate it.

(c) Prove      . . . .F G F G F G G F G F         
             

, where F


 and G


 are

differentiable vector function.

(d) Find  ,
R

f x y dxdy , over the region R bounded by 
1
3x y  and x y  where

  4 2,f x y x y  .

(e) What is the maximum directional directional derivative of   2 2, xg x y y e  at

(2, –1) and in the direction of what unit vector does it occur?

(f) Let f and g be twice differentiable functions of one variable and let

     ,u x t f x ct g x ct     for a constant c. Show that 
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3. Answer any three questions : 10×3=30

(a) (i) Find the minimum value of 2 2 2x y z   subject to the constaint

 1 0, 0, 0ax by cz a b c      .

(ii) Show that    
1

2 2 2 2, , , ,f x y z x y z


  is harmonic. 8+2
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(b) (i) Let z be a differentiable function of x and y and let cos , sinx r y r    ,

Prove that 
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(ii) Prove that  
3 3

,,
0,

x y
x yf x y x y
x y

    
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 is not continuous at (0, 0). 3

(c) (i) Prove that    22 2

32 log3
22

dxdydz

x y z
  

   , extended over the sphere

2 2 2 1x y z   .

(ii) Using a double integral, prove that the relation    ,
m n

B m n
m n

 
 

,

m, n > 0. 5+5

(d) (i) Verify Stoke’s theorem for the function 2F x i xyj 


 integrated round the

square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y

= a.

(ii) Prove that    2 2 2 42 2 8a a x y x y dxdy a        , the region of

integration being the interior of the circle  2 2 22 2x y a x y a    . 6+4

(e) (i) Evaluate · 2ˆ. ; 2S A n ds A yi zj x k    over the surface S of the bounded

by the parabolic cylinder 2 8y x , in the first octant bounded by the plane

y = 4 and z = 6. 7

(ii) Find the directional derivative of   2, 2 5f x y x xy    at (1, 1) in the

direction of unit vector  3 4,
5 5

 . 3

(   2   )




